Trustbit

View Original

Part 2: Data Analysis with powerful Python – How to get the best results from your data

Analyzing and visualizing data from a SQLite database in Python can be a powerful way to gain insights and present your findings. In this blog, I will walk you through the steps to retrieve data from a SQLite database file named gold.db and display it in the form of a chart using Python. We'll use some essential tools and libraries for this task.

Tools you will need !

Before we start, make sure you have the following tools and libraries installed:

  1. Python: Python is the core programming language for this task. You can download it from python.org.

  2. SQLite Database Browser: You can use a tool like DB Browser for SQLite to explore the database and its structure. This is optional but can be helpful for understanding the database schema.

  3. Jupyter Notebook (optional): Jupyter Notebook is an interactive environment that makes data analysis and visualization easier. You can install it using pip: pip install jupyter.

  4. Python Libraries:

    • sqlite3: This is a built-in library for Python that allows you to work with SQLite databases.

    • pandas: A popular data manipulation library for Python.

    • matplotlib: A widely used library for creating charts and visualizations.

You can install the required libraries using pip:

See this content in the original post

Steps to analyze and visualize data from SQLite database

Now, let's dive into the steps to analyze and display data from the gold.db database:

Step 1: Connect to the database

First, you need to connect to the SQLite database using the sqlite3 library. Here's how you can do it:

See this content in the original post

Step 2: Query the database to retrieve the required data

See this content in the original post

Execute the query and fetch the data into a Pandas dataframe:

See this content in the original post

Step 3: Pivot the data for plotting

See this content in the original post

Step 4: Create a chart

Now, it's time to create a chart using the matplotlib library. Let's say you want to create a line chart to visualize the type product prices over time:

See this content in the original post

Step 5: Save or display the chart

You can choose to save the chart to a file using plt.savefig("gold_prices_chart.png") or display it within a Jupyter Notebook if you're using one.

That's it! You have successfully analyzed data from the SQLite database and displayed it as a chart in Python. You can adapt these steps to your specific data and charting requirements. Remember to close the database connection when you're done:

See this content in the original post

In this blog post, we've covered the essential steps and tools to analyze and visualize data from a SQLite database in Python. Data analysis and visualization are crucial skills for various fields, and Python makes it accessible and powerful for these tasks.